
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 2941–2969

www.elsevier.com/locate/jcp
Modelling wave dynamics of compressible elastic materials

S.L. Gavrilyuk *, N. Favrie, R. Saurel

University Aix-Marseille, Polytech Marseille, UMR CNRS 6595 IUSTI, SMASH Project, INRIA,

Institut Universitaire de France, 5 Rue E. Fermi, 13453 Marseille Cedex 13, France

Received 30 May 2007; received in revised form 19 November 2007; accepted 20 November 2007
Available online 4 December 2007
Abstract

An Eulerian conservative hyperbolic model of isotropic elastic materials subjected to finite deformation is addressed. It
was developed by Godunov [S.K. Godunov, Elements of continuum mechanics, Nauka, Moscow, 1978 (in Russian) and
G.H. Miller, P. Colella, A high-order Eulerian Godunov method for elastic–plastic flow in solids, J. Comput. Phys. 167
(2001) 131–176]. Some modifications are made concerning a more suitable form of governing equations. They form a
set of evolution equations for a local cobasis which is naturally related to the Almansi deformation tensor. Another novelty
is that the equation of state is given in terms of invariants of the Almansi tensor in a form which separates hydrodynamic
and shear effects. This model is compared with another hyperbolic non-conservative model which is widely used in engi-
neering sciences. For this model we develop a Riemann solver and determine some reference solutions which are compared
with the conservative model. The numerical results for different tests show good agreement of both models for waves of
very small and very large amplitude. However, for waves of intermediate amplitude important discrepancies between
results are clearly visible.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

At least two types of hyperbolic models of elastic materials subjected to finite deformation can be
found in the literature. The first one uses an evolution equation for the stress tensor (more exactly, for
its traceless part). Such an approach is largely used in engineering science because it permits us to easily
incorporate plasticity effects through Maxwell type relaxation models [19] mentioned that ‘‘their propo-
nents suggest that these models are accurate even though they are thermodynamically inconsistent”.
Another drawback of such models is that they are not in conservative form. Hence, the definition of weak
solution is questionable and, as a consequence, rigorous numerical resolution is problematic. Finally, the
formulation of governing equations is somewhat phenomenological. Indeed, to satisfy the objectivity prin-
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ciple, Jaumann type derivatives should be used in the equation formulation, and this is not the only pos-
sible choice.

Another class of models deals with conservative hyperbolic thermodynamically consistent systems of equa-
tions formulated in terms of displacements [5,6,10,13,19]. The equations are supplemented by stationary con-
servation laws (differential constraints) compatible with the governing equations. The symmetrization of such
mathematical models appearing in different areas of physics is discussed in [6]. The model we study here fol-
lows the lines of [5,10]. A modification is made concerning a more suitable form of governing equations. They
are presented as a set of evolution equations for a local cobasis naturally related to the Almansi deformation
tensor. This tensor is suitable for the Eulerian description of elastic isotropic materials. Another novelty is that
the equation of state is given in terms of the invariants of the Almansi tensor in a form which separates hydro-
dynamic and shear effects under shock loading.

We compare the conservative model with a non-conservative hyperbolic model formulated in terms of the
evolution equation for the deviator of the stress tensor [9,21].

The paper is organized as follows. In Section 2, we formulate a thermodynamically compatible non-conser-
vative hyperbolic model. The structure of this model is such that it allows us to split governing equations into
two subsystems. We develop an ‘‘exact” Riemann solver for such a system and obtain several reference solu-
tions that will be used for comparison of the two models (conservative and non-conservative). In Section 3 we
formulate an Eulerian conservative model in terms of a natural curvilinear basis associated with the Lagrang-
ian coordinates. The hyperbolicity of this model is established. The equation of state is proposed in a form
allowing separation of the energy into ‘‘hydrodynamic” and ‘‘elastic” parts compatible with the non-conser-
vative model of Section 2. In Sections 4 and 5 we compare both models in a large domain of physical param-
eters. For the first non-conservative model we use an ‘‘exact” solution of the Riemann problem. For the
second one we use a numerical solution by a second order Godunov method. An approximate HLLC type
solver [17] was used. The numerical results for different tests show good agreement of both models for waves
of very small or very large amplitude. However, for waves of intermediate amplitude there are important dis-
crepancies between results.

2. A conventional Eulerian non-conservative model

The aim of this section is to present a well accepted Eulerian model for nonlinear elasticity. This system is of
interest because of common usage in engineering sciences. The physical meaning of the various terms in the
equations is also easy to examine. Moreover, this model can be extended to elastoplastic transformations,
where the ‘‘plastic part” can be added in a standard way through a Maxwell type relaxation equation for
the deviatoric part of the stress tensor. In the present paper, this model will be mainly used to:

� Highlight the issues present in such conventional modelling. These issues are related to the non-conserva-
tive character of the equations.
� Determine reference solutions, representative of the results obtained with engineering codes. In order to

determine these reference solutions, a Riemann solver is built. These solutions will be compared in the
forthcoming sections with the results of a conservative model formulated in terms of displacements.

The model presented in this section is somehow the reference at the engineering level [9,21]. It couples the
nonlinear Euler system of compressible fluids with the system of linear elasticity for transverse waves. This
system expresses mass, momentum and energy conservation laws augmented by evolution equations for the
deviatoric part of the stress tensor:
oq
ot
þ divðqvÞ ¼ 0;

oqv

ot
þ divðqv� vþ pI � SÞ ¼ 0;

oqE
ot
þ divððqE þ pÞv� SvÞ ¼ 0;
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DJ S
Dt
þ 2

3
l trðV ÞI � 2lV ¼ 0: ð1Þ
Here q, v, and E ¼ eþ ee þ 1
2
v � v are, respectively, the density, the velocity vector and the total energy, eðq; pÞ

is the internal energy verifying the Gibbs identity
T ds ¼ deþ pd
1

q

� �
where T is the temperature and s is the entropy, ee ¼ S : S
4b is the elastic energy related to the shear stresses;

b ¼ ql, l is the shear modulus, p is the thermodynamic pressure, and S ¼ ðSijÞ is the 3� 3 symmetric traceless
stress tensor. The rate of deformation tensor is given by
V ¼ 1

2

ov

ox
þ ov

ox

� �T
 !
The notation DJ S
Dt is the Jaumann derivative, and W is the spin tensor:
DJ S
Dt
¼ DS

Dt
þ SW � WS; W ¼ 1

2

ov

ox
� ov

ox

� �T
 !

;

where
D
Dt
¼ o

ot
þ v � r
is the material derivative. In particular, the Jaumann derivative coincides with the material derivative for
potential flows. For small rotational deformations the Jaumann derivative can also be replaced by the
material derivative. It is easy to obtain from (1) the evolution equation for entropy:
q T
Ds
Dt
� S : S

4b2

Db
Dt
þ 1

4b
DðS : SÞ

Dt

� �
� S : V ¼ 0 ð2Þ
Taking into account that trðSÞ ¼ 0 and trðSBÞ ¼ 0 for B ¼ SW � WS, we obtain from Eq. (2)
DðS : SÞ
Dt

¼ 2
DS
Dt

: S ¼ 2
DJ S
Dt

: S ¼ �2
2

3
l trðV ÞI � 2lV

� �
: S ¼ 4lðV : SÞ ¼ 4lðS : V Þ
Finally, Eq. (2) will be reduced to:
q T
Ds
Dt
� S : S

4b2

Db
Dt

� �
¼ 0 ð3Þ
In absence of shock waves, elastic transformations are reversible and the model has to be isentropic. An extra
evolution equation thus should be added in order to have an isentropic motion:
Db
Dt
¼ 0 ð4Þ
Let us remark that [1] used a 1D variant of this model by making an assumption b ¼ ql ¼ cte which is com-
patible with Eq. (4).

2.1. 1D system in presence of shear effects

In order to determine the Riemann problem solution, the flow model is examined in the 1D case (all vari-
ables depend only on ðt; xÞ) in the presence of shear effects. To simplify the presentation, we will use the mate-
rial derivative for the equations of the traceless stress tensor, and not the Jaumann derivatives. The system
now reduces to:
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oq
ot
þ oqu

ox
¼ 0;

oqu
ot
þ oqu2 þ p � S11

ox
¼ 0;

oqv
ot
þ oquv� S12

ox
¼ 0;

oqE
ot
þ oðqE þ p � S11Þu� S12v

ox
¼ 0;

oqS11

ot
þ oqS11u

ox
¼ 4

3
b

ou
ox
; b ¼ ql;

oqS22

ot
þ oqS22u

ox
¼ � 2

3
b

ou
ox
;

oqS12

ot
þ oqS12u

ox
¼ b

ov
ox
;

Db
Dt
¼ 0:

ð5Þ
The first four equations are conventional equations of continuum mechanics. The total specific energy E con-
tains internal, elastic and kinetic energy. The other equations correspond to the evolution of the traceless stress
tensor. These equations are obtained on the basis of Hooke law in the limit of small deformations. Under com-
pression ou

ox 6 0, a negative stress S11 and a positive stress S22 are created. Their contribution augments the
resistance to compression in the x-direction. Under shear deformation ov

ox 6¼ 0, stress S12 is created and aug-
ments the resistance to shear.

Model (5) will be used to determine reference solutions which will be studied in the next section.

2.2. Simple waves

System (5) can be written in quasi-linear form:
oW

ot
þ AðWÞ oW

ox
¼ 0; ð6Þ
where
W ¼

q

u

p

S11

S22

l

v

S12

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; AðWÞ ¼

u q 0 0 0 0 0 0

0 u 1
q � 1

q 0 0 0 0

0 qc2 u 0 0 0 0 0

0 � 4
3
l 0 u 0 0 0 0

0 2
3
l 0 0 u 0 0 0

0 �l 0 0 0 u 0 0

0 0 0 0 0 0 u � 1
q

0 0 0 0 0 0 �l u

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

The system is hyperbolic with characteristic speeds given by: u, u�
ffiffi
l
q

q
and u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

3
l
q

q
. The contact char-

acteristic dx
dt ¼ u is of multiplicity four. Here c is the thermodynamic sound speed. Standard calculations show

that the characteristic fields u and u�
ffiffi
l
q

q
are linearly degenerate while u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

3
l
q

q
is a genuinely nonlinear

field.
The structure of the matrix AðWÞ allows a splitting of the system into two subsystems:

– a subsystem involving acoustic and contact waves propagating with speeds u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

3
l
q

q
and u,

– a subsystem describing shear waves propagating with speeds u�
ffiffi
l
q

q
.
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We examine self-similar solutions of (6):
W ¼WðnÞ; n ¼ x=t:
The system (6) becomes
ðA� nIÞ dW

dn
¼ 0 ð7Þ
It follows from here that n is an eigenvalue of the matrix A, and dW
dn is the corresponding right eigenvector of A.

We consider now separately three types of waves.

2.2.1. Acoustic wave

The subsystem composed of the first 6 equations is considered. If
n ¼ u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

3

l
q

s

the following relations are hold:
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

3

l
q

s
dqþ qdu ¼ 0;

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

3

l
q

s
duþ 1

q
dðp � S11Þ ¼ 0;

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

3

l
q

s
dp þ qc2du ¼ 0;

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

3

l
q

s
dS11 �

4

3
ldu ¼ 0;

dð2S22 þ S11Þ ¼ 0; db ¼ 0:
It follows from here that:
dp ¼ c2 dq; db ¼ 0;

du ¼ � 1

qc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4

3

b
q2

s
dp

1

q2c2
dp þ 3

4b
dS11 ¼ 0

ð8Þ
It is now necessary to specify the equation of state (EOS). For the sake of simplicity we consider the stiffened
gas EOS:
e ¼ p þ cp1
ðc� 1Þq ð9Þ
The sound speed is defined by:
c2 ¼ c
p þ p1

q

By integrating system (8) between initial state with subscript 0 and final state with superscript *, we have:

p	 þ p1

q	c
¼ p0 þ p1

qc
0

; ð10Þ

u	 ¼ u0 �
1

c

Z p	þp1

p0þp1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c~p�

cþ1
c

K0

þ 4b

3cK2
0

~p�
2ðcþ1Þ

c

vuut d~p; K0 ¼
q0

ðp0 þ p1Þ
1
c

; ð11Þ

ðp	 þ p1Þ
�1

c � ðp0 þ p1Þ
�1

c � K0
3

4b
S	11 � S110

� �
¼ 0: ð12Þ
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This system provides three relations through rarefaction waves. The negative (positive) sign in the expression
for Riemann invariants (11) corresponds to a left-facing (right-facing) wave. The tangential velocity v and the
component S12 do not vary in such a wave:
dv ¼ 0; dS12 ¼ 0:
2.2.2. Shear waves

We now consider the subsystem formed by the last two equations of system (6). For
n ¼ u�
ffiffiffi
l
q

r

the following relations are verified:
d S12 �
ffiffiffi
b

p
v

� �
¼ 0 ð13Þ
By integrating Eq. (13) between initial state with subscript 0 and final state with superscript *, we have the
following Riemann invariant:
ffiffiffi

b
p
ðv0 � v	Þ ¼ S120 � S	12 ð14Þ
In expression Eq. (14) for Riemann invariants, a negative (positive) sign corresponds to the right-facing (left-
facing) wave.

2.2.3. Contact wave

For contact characteristics n ¼ u system (7) becomes:
du ¼ 0;

dðp � S11Þ ¼ 0;

dðS12Þ ¼ 0;

dðvÞ ¼ 0:
These relations express the continuity of the velocity vector, generalized pressure and shear stress component
through the contact characteristics.

2.3. Shock relations

Conventional shock relations are not available for system (5) because it cannot be written in divergence
form. This poses serious difficulties for the Riemann problem solution and its numerical approximation with
finite difference, finite volume or finite element methods. It is the reason why a conservative formulation will
be developed in a forthcoming section.

As we have seen before the model needs an additional equation to be isentropic:
Db
Dt
¼ 0:
Combining that equation with the mass conservation, we have:
oqb
ot
þ oqub

ox
¼ 0:
From which we deduce the jump relation: b	 ¼ b0. This equation was also used by [1] who supposed b ¼ b0 in
the entire domain.

The first four equations of system (5) are in conservative form and thus the Rankine–Hugoniot relations
between pre-and post-shock states are:
F	 � DU	 ¼ F0 � DU0 ð15Þ
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where D is the shock speed, and the vectors of conservative variables and flux are given by:
U ¼ q qu qv qEð ÞT;
F ¼ qu qu2 þ p � S11 quv� S12 ðqE þ p � S11Þu� vS12

� �T
:

The next three equations of system (5) are in non-conservative form. However, we can rewrite non-conserva-
tive terms in the form
b
ou
ox
¼ oðbuÞ

ox
� u

ob
ox
;

b
ov
ox
¼ oðbvÞ

ox
� v

ob
ox
:

At shocks b is continuous. If, moreover, it is a function with bounded derivatives, the non-conservative prod-
uct which appeared now is a locally integrable function. Hence, the following Rankine–Hugoniot relations can
be obtained:
q	S	11ðu	 � DÞ � 4

3
b	u	 ¼ q0S110ðu0 � DÞ � 4

3
b0u0

q	S	22ðu	 � DÞ þ 2

3
b	u	 ¼ q0S220ðu0 � DÞ þ 2

3
b0u0

q	S	12ðu	 � DÞ � b	v	 ¼ q0S110ðu0 � DÞ � b0v0

ð16Þ
A more suitable form of system (15) and (16) can be obtained:
e	 � e0 þ
p	 þ p0

2

� �
1

q	
� 1

q0

� �
¼ 0 ð17Þ

S110 � S	11 ¼
4

3

b
m
ðu0 � u	Þ ð18Þ

m2 ¼ ðp0 � p	Þ
1
q	 � 1

q0

� � þ 4

3
b ð19Þ

u	 ¼ u0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 � p	

1
q	 � 1

q0

� �þ 4

3
b

vuut 1

q	
� 1

q0

� �
ð20Þ

v	 ¼ v0 ð21Þ
S	12 ¼ S120 ð22Þ

S220 � S	22 ¼ �
2

3

b
m
ðu0 � u	Þ ð23Þ
Here m ¼ qRðuR � DÞ ¼ q	Rðu	R � DÞ is the mass flow rate across the shock front. We consider again the
material governed by the stiffened gas EOS. With this EOS it is possible to determine from (17) to (19) the
density along the Hugoniot curve and the shock mass flow rate as a function of pressure in the post-shock
state:
q	 ¼ q0

ðcþ 1Þðp	 þ p1Þ þ ðc� 1Þðp0 þ p1Þ
ðc� 1Þðp	 þ p1Þ þ ðcþ 1Þðp0 þ p1Þ

ð24Þ

m2 ¼ q0ððcþ 1Þðp	 þ p1Þ þ ðc� 1Þðp0 þ p1ÞÞ
2

þ 4

3
b ð25Þ
It is worth to mention that Eq. (20) has not a unique solution for a given velocity difference. By noting
U ¼ p	þp1

p0þp1
Eq. (20) becomes:
U3 þ aU2 þ bUþ c ¼ 0 ð26Þ
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with
a ¼ �ðcþ 1Þ qR

2ðp0 þ p1Þ
ðu	 � u0Þ2 � 2þ 1

ðcþ 1Þ ðc� 1Þ þ 8

3

b
q0ðp0 þ p1Þ

� �
;

b ¼ �2ð1� cÞ q0

2ðp0 þ p1Þ
ðu	 � u0Þ2 þ 1� 2

ðcþ 1Þ ðc� 1Þ þ 8

3

b
q0ðp0 þ p1Þ

� �

c ¼
�ðc� 1Þ2 q0

2ðp0þp1Þ
ðu	 � u0Þ2 þ ðc� 1Þ þ 8

3
b

q0ðp0þp1Þ

� �
ðcþ 1Þ :
For a given velocity in the post-shock state u	, the physical solution corresponds to U P 1. With this condi-
tion, Eq. (26) has a unique solution. Once this equation is solved, the entire shock state is determined with
(18), (21)–(25).

All relations are now available for the Riemann problem solution.

2.4. Riemann problem

The Riemann problem involves five waves and four principal wave patterns as shown in Fig. 1 (vacuum
appearance is not considered here). With the previous relations it is possible to determine the states between
the waves. An iterative solver is used. The iteration variable is the contact wave velocity u	. The iterations are
done with the Newton–Raphson method. The initial condition for the iterative method reads:
u	 ¼ ðpL � S11LÞ � ðpR � S11RÞ þ ZRuR þ ZLuL

ZR þ ZL

; Z ¼ q c2 þ 4

3

l
q

� �
Then we have to consider the four cases summarized in Fig. 1.
If u	 > uR, we use the shock relations (15) and (16) on the right. Eq. (26) is solved and the pressure behind

the shock p	 is determined. Then Eqs. (18), (23)–(25) are solved to determine the other variables.
If u	 6 uR we use rarefaction wave Eqs. (10)–(12) on the right. Eq. (11) needs iterative resolution.
The same procedure is used for the left-facing wave. The two shear waves corresponding to the character-

istics u�
ffiffi
l
q

q
have not to be considered for the determination of contact wave velocity and normal stress.
Fig. 1. The four possible Riemann problem wave patterns for the compressible elastic flow model.
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Once normal stress is determined on both sides it is then necessary to examine the difference
hðu	Þ ¼ ðp � S11Þ	R � ðp � S11Þ	L. If j hðu	Þ j< d (for some small d), a new value of u	 (denoted by ~u	) is deter-
mined by Newton–Raphson method:� � � �
~u	 ¼ u	 �
p	L � S	11L � p	R � S	11R

d p	
L
�S	

11Lð Þ
du � d p	

R
�S	

11Rð Þ
du
When convergence is reached, the remaining variables of states U	R and U	L are determined by shock relations
(26), (24), (25), (18), (23) or by Riemann invariants (10)–(12) (except the tangential velocity and stress). The
last variables are determined with the help of relations (14). Their combination results in:ffiffiffip
S	12 ¼
S12R þ S12L þ bðvR � vLÞ

2
;

v	 ¼
ffiffiffi
b
p

vL þ
ffiffiffi
b
p

vR þ S12R � S12L

2
ffiffiffi
b
p :
2.5. Reference results

In this section, we present different test problems that will be used to compare the models. In all compu-
tations the material EOS parameters are taken equal to: p1 ¼ 6 � 108 Pa, c ¼ 4:4.

2.5.1. Fluid limit

In this example the shear modulus l is set to zero. The model thus reduces to the Euler equations of compress-
ible fluids. We consider a shock tube where initially an interface separates the material at rest with high pressure
p ¼ 1010 Pa and density q ¼ 1000 kg=m3 on the left, and the same material at rest with pressure p ¼ 105 Pa and
density q ¼ 1000 kg=m3 on the right. The interface is initially located at xi ¼ 0:5 m. Fig. 2 shows computed
results at time t ¼ 50 ls. Symbols correspond to the exact solution with the present elastic flow model, and lines
to the exact solution of the Euler equations. The results are in perfect agreement with both methods.

2.5.2. Elastic shock tube

We consider a shock tube where an interface separates initially the elastic material with high pressure
p ¼ 1010 Pa and density q ¼ 7800 kg=m3 on the left, and the same material at rest with pressure p ¼ 105 Pa
and density q ¼ 7800 kg=m3 on the right. In both materials, we took b ¼ 1014 Pa kg=m3. A tangential velocity
discontinuity is imposed: v ¼ �100 m=s on the left, and v ¼ 100 m=s on the right. The interface is initially
located at xi ¼ 0:6 m. Fig. 3 shows computed results at time t ¼ 150 ls. We can see five waves: a rarefaction
wave on the left, a shock wave on the right, two waves corresponding to the shear waves and the contact dis-
continuity. Results of Fig. 3 will be considered as reference results and will be used for comparison with a
more sophisticated conservative flow model developed in the next section (See Fig. 4).

3. Conservative Eulerian model of nonlinear elasticity

The hyperbolic conservative model presented below was developed by [5,10]. Some modifications are made
concerning a more suitable form of governing equations. They form a set of evolution equations for a local
cobasis. Also, the equation of state is given in terms of the invariants of the Almansi deformation tensor in a
form which separates hydrodynamic and shear effects. The essential difference with respect to the model con-
sidered in Section 2 is that the evolution equations are formulated in terms of displacements, and not in terms
of stresses. The advantage of this approach is that the governing equations are naturally objective, there is no
need to add Jaumann type derivatives, only material derivatives are present.

3.1. Basic definitions

We will formulate the model in 3D case. Let X ¼ ðX aÞ be the Lagrangian coordinates, a ¼ 1; 2; 3; x ¼ ðxiÞ
be the Eulerian coordinates, i ¼ 1; 2; 3. We define the deformation gradient



Fig. 2. Shock tube test problem in the fluid limit. The ‘‘exact” solution of the elastic model (symbols) and exact solution of Euler equations
(lines) are shown at time t ¼ 50 ls. The agreement is perfect.
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F ¼ ox

oX
;

Usually, conservative elasticity models use the right Cauchy–Green tensor (dilatation tensor)
CR ¼ F TF
However, in our approach we will use the inverse of left Cauchy–Green tensor CL ¼ FF T which will be de-
noted by G
G ¼ ðCLÞ�1 ¼ ðF TÞ�1F �1
The tensor G is more convenient for the Eulerian formulation of governing equations of isotropic elastic mate-
rials. In particular, it determines the Almansi deformation tensor (Eulerian deformation tensor):
A ¼ I � G
2

We introduce the curvilinear cobasis (covectors)
ea ¼ rX a; a ¼ 1; 2; 3
which is dual to the natural curvilinear basis



Fig. 3. Elastic shock tube test problem. The material is considered here as elastic in the presence of an initial tangential velocity
discontinuity. Solution is shown at time t ¼ 150 ls. Five waves are visible propagating with different velocities: three classical waves
(rarefaction on the left, shock wave on the right and the contact discontinuity), and two shear waves.
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ea ¼
ox

oX a ; a ¼ 1; 2; 3
In particular, the vector ea is the a-th column of ðF �1ÞT:



Fig. 4. HLLC approximate solver. Solution in the star region consists of two constant states separated from each other by a middle wave
of speed S	
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ðF �1ÞT ¼

oX 1

ox1
oX 2

ox1
oX 3

ox1

oX 1

ox2
oX 2

ox2
oX 3

ox2

oX 1

ox3
oX 2

ox3
oX 3

ox3

0
BB@

1
CCA ¼ e1 e2 e3

� �
¼

e1
1 e2

1 e3
1

e1
2 e2

2 e3
2

e1
3 e2

3 e3
3

0
B@

1
CA; ea

j ¼ ðeaÞj ¼
oX a

oxj
:

The scalar product of these vectors satisfies
ea � eb ¼ db
a

where db
a are the Kronecker symbols. With these definitions
G ¼
X3

a¼1

ea � ea; G�1 ¼
X3

a¼1

ea � ea: ð27Þ
Here for any vectors a and b the matrix of the tensor product a� b is defined as follows
ða� bÞij ¼ aibj;
(i are lines and j are columns). Since
DX a

Dt
¼ 0
we have by taking the gradient of that equation:
oea

ot
þrðv � eaÞ ¼ 0; rot ea ¼ 0 ð28Þ
In particular, Eqs. (27) and (28) imply that
DG
Dt
þ G

ov

ox
þ ov

ox

� �T

G ¼ 0
It is interesting to note that the left hand side of this equation can be considered as objective derivative.

Remark 1. The differential constraint in Eq. (28) rot ea ¼ 0 is compatible with the evolution equation for ea: if
rot ea ¼ 0 vanishes at time t ¼ 0, it vanishes at all t > 0. This constraint is automatically satisfied in 1D case.
However, in multidimensional settings a proper handling is necessary because, numerically, differences arise.
Actually, the best strategy for solving such a problem was proposed by [10,11] who considered an augmented

system of hyperelasticity where the evolution equation for rotððF �1ÞTÞ has been added. The columns of

rotððF �1ÞTÞ are the vectors wa ¼ rot ea. The evolution Eq. (28) was replaced in [10] by:
oea

ot
þrðv � eaÞ ¼ �rotea ^ v: ð29Þ



S.L. Gavrilyuk et al. / Journal of Computational Physics 227 (2008) 2941–2969 2953
The ‘‘geometric Eq. (29) is equivalent to Miller and Colella’ one (2001) written for rotððF �1ÞT Þ (see Eq. (9) in
[10] where the notation g was used for the matrix F �1). For the vectors wa ¼ rotea the following conservative
system can be obtained from (29):
owa

ot
þ rot ðwa ^ vÞ ¼ 0:
Since
rot ðwa ^ vÞ ¼ wadivv� vdivwa þ owa

ox
v� ov

ox
wa;
it is equivalent to the following equation
owa

ot
þ div v� wa � wa � vð Þ ¼ 0: ð30Þ
The divergence of a second-order tensor is a vector; its components are the divergence of each column of the
tensor. To interpret the geometry of deformation, it is convenient to use the local cobasis vectors ea as un-
known variables. In cartesian coordinates Eqs. (29) and (30) are
oea
j

ot
þ o

oxj

X3

i¼1

ea
i vi

 !
¼ v ^ wað Þj;

owa
j

ot
þ
X3

i¼1

o

oxi
viwa

j � vjwa
i

� �
¼ 0:
A numerical strategy that control the gauge constraint wa ¼ 0 was developed in [10,11]. In our study we will
concentrate only on the 1D problems.
3.2. Isotropic elastic body

Let e be the specific internal energy,
e ¼ eðG; sÞ

where s is the specific entropy. Let X0 be a domain in the reference configuration, and X its image in the actual
configuration. Let us consider the variation of the internal energy E i at fixed value of s:
dE i ¼ d
Z

X
qeðG; sÞdX
We have
dE i ¼ d
Z

X
qeðG; sÞdX ¼

Z
X0

q0deðG; sÞdX0 ¼
Z

X0

q0tr
oe
oG

dG
� �

dX0
The matrix
oe
oG
is symmetric. Let dx be the variation of the particle positions at the actual configuration considered as a func-
tion of Lagrangian coordinates [5,14]. Since
dG ¼ ðdF �1ÞTF �1 þ ðF �1ÞTdF �1 ¼ �ðF �1dFF �1ÞTF �1 � ðF �1ÞTF �1dFF �1 ¼ � odx

ox

� �T

G� G
odx

ox
we obtain
dE i ¼ �
Z

X0

2q0tr
oe
oG

G
odx

ox

� �
dX0 ¼ �

Z
X

2qtr
oe
oG

G
odx

ox

� �
dX ¼

Z
X

tr r
odx

ox

� �
dX
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The tensor
r ¼ �2q
oe
oG

G

is the Murnaghan stress tensor (see [5,6]. It is symmetric, if e is isotropic function. Indeed, in the isotropic case,
e depends only on the invariants of G which can be defined as
J i ¼ trðGiÞ; i ¼ 1; 2; 3
In particular, the determinant of G (denoted by j G j) can be expressed in terms of J i in the form
j G j¼ 2J 3 � 3J 1J 2 þ J 3
1

6

It can be proved that (see, for example, [4])
o j G j
oG

¼j G j G�1;
oJ i

oG
¼ iGi�1; i ¼ 1; 2; 3
Hence
r ¼ �2q
oe
oG

G ¼ �2q
oe
oJ 1

I þ 2
oe
oJ 2

Gþ 3
oe
oJ 3

G2

� �
G ¼ �2qG

oe
oG
¼ rT
Here the density q is expressed by
q ¼ q0 j Gj
1=2
3.2.1. EOS formulation in separate form

It is natural to present the energy in the form which is combination of a ‘‘hydrodynamic” part and an ‘‘elas-
tic” part:
e ¼ eðq; sÞ þ eeðg; sÞ

where
g ¼ G

j Gj1=3
:

The hydrodynamic part of the energy eðq; sÞ can be taken in the form of stiffened gas EOS:
eðq; pÞ ¼ p þ cp1
qðc� 1Þ ; p þ p1 ¼ exp

s� s0

cv

� �
qc; s0 ¼ const: ð31Þ
Here c is the polytropic exponent, p1 is a constant, cv is the specific heat at constant volume.
The elastic part of the internal energy eeðg; sÞ depends on the tensor g. The tensor g has a unit determinant,

so it is unaffected by the volume change. This idea to take the arguments of the internal energy in the form q, g

and s was first proposed by [7] (see also [13]), but for the dependence of the energy on the right Cauchy–Green
tensor. The simplest example of the elastic energy is
eeðg; sÞ ¼
lðsÞ
4q0

trððg � IÞ2Þ ¼ lðsÞ
4q0

J 2

j Gj2=3
� 2J 1

j Gj1=3
þ 3

 !
ð32Þ
where lðsÞ is the shear modulus which can depend on the entropy. The stress tensor will be then
r ¼ �2q
oe
oG

G ¼ �q2 oe
oq

I � 2qG
lðsÞ
4q0

2G

j Gj2=3
� 2

3

J 2

j Gj1þ2=3
j G j G�1 � 2I

j Gj1=3
þ 2J 1

3 j Gj1þ1=3
j G j G�1

 !

¼ �pI � lðsÞ q
q0

1

j Gj2=3
G2 � J 2

3
I

� �
� 1

j Gj1=3
G� J 1

3
I

� � !
ð33Þ
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Here
p ¼ q2 oe
oq
is the thermodynamic pressure. Obviously,
p ¼ � trðrÞ
3

Hence, the shear part of the energy has no influence on the pressure, it is determined only by the hydrody-
namic part. For this form of the energy, the shear part of the stress tensor has always zero trace. In the case
of small displacements, we obtain the classical Hooke law.

3.3. Governing equations

The governing equations can be written in the form:
oea

ot
þrðv � eaÞ ¼ 0; rotea ¼ 0;

oq
ot
þ divðqvÞ ¼ 0;

oqv

ot
þ divðqv� v� rÞ ¼ qf;

oðqEÞ
ot
þ divðqvE � rvÞ ¼ qv � f:
Here E ¼ eþ ee þ v�v
2

is the specific total energy, f is the specific external force. Initial conditions for ea are:
eajt¼0 ¼ ia; a ¼ 1; 2; 3
where ia are the vectors of Cartesian basis.

3.4. Hyperbolicity

For the sake of simplicity, we will suppose that the specific entropy s and the Lagrangian density q0 which
conserve along trajectories
Ds
Dt
¼ 0;

Dq0

Dt
¼ 0;
are constant. Indeed, these equations give only contact characteristics. Since the density can be expressed in
terms of G by
q ¼ q0 j Gj
1=2
we will not consider the density as independent variable. To avoid the double indices, we introduce the fol-
lowing notation:
ea ¼
ea

1

ea
2

ea
3

0
B@

1
CA ¼

aa

ba

ca

0
B@

1
CA; a ¼ 1; 2; 3
The matrix G is then
G ¼
ða1Þ2 þ ða2Þ2 þ ða3Þ2 a1b1 þ a2b2 þ a3b3 a1c1 þ a2c2 þ a3c3

a1b1 þ a2b2 þ a3b3 ðb1Þ2 þ ðb2Þ2 þ ðb3Þ2 b1c1 þ b2c2 þ b3c3

a1c1 þ a2c2 þ a3c3 b1c1 þ b2c2 þ b3c3 ðc1Þ2 þ ðc2Þ2 þ ðc3Þ2

0
B@

1
CA
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The equations
oea

ot
þrðv � eaÞ ¼ 0; rotea ¼ 0
in Cartesian coordinates are
oaa

ot
þ o

ox
ðuaa þ vba þ wcaÞ ¼ 0;

oba

ot
þ o

oy
ðuaa þ vba þ wcaÞ ¼ 0;

oca

ot
þ o

oz
ðuaa þ vba þ wcaÞ ¼ 0;

oba

ox
� oaa

oy
¼ 0;

oaa

oz
� oca

ox
¼ 0;

oca

oy
� oba

oz
¼ 0:
Here v ¼ ðu; v;wÞT. If all the variables depend only on ðt; xÞ this imply that
ba ¼ const; ca ¼ const;
and, since initially b1 ¼ 0, c1 ¼ 0, b2 ¼ 1, c2 ¼ 0, b3 ¼ 0, c3 ¼ 1, we obtain
G ¼
ða1Þ2 þ ða2Þ2 þ ða3Þ2 a2 a3

a2 1 0

a3 0 1

0
B@

1
CA; j G j¼ ða1Þ2; J 1 ¼ ða1Þ2 þ ða2Þ2 þ ða3Þ2 þ 2
Hence
q ¼ q0 j Gj
1=2 ¼ a1q0
The stress tensor is
r ¼
r11 r12 r13

r12 r22 r23

r13 r23 r33

0
B@

1
CA:
The governing equations are
oa1

ot
þ o

ox
ðua1Þ ¼ 0;

oa2

ot
þ o

ox
ðua2 þ vÞ ¼ 0;

oa3

ot
þ o

ox
ðua3 þ wÞ ¼ 0;

ou
ot
þ u

ou
ox
� 1

q
or11

ox
¼ 0;

ov
ot
þ u

ov
ox
� 1

q
or12

ox
¼ 0;

ow
ot
þ u

ow
ox
� 1

q
or13

ox
¼ 0:

ð34Þ
The conservative form of (34) is
oa1

ot
þ o

ox
ðua1Þ ¼ 0;

oa2

ot
þ o

ox
ðua2 þ vÞ ¼ 0;

oa3

ot
þ o

ox
ðua3 þ wÞ ¼ 0;

oða1q0uÞ
ot

þ o

ox
ða1q0ðuÞ

2 � r11Þ ¼ 0;
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oða1q0vÞ
ot

þ o

ox
ða1q0uv� r12Þ ¼ 0;

oða1q0wÞ
ot

þ o

ox
ða1q0uw� r13Þ ¼ 0; ð35Þ
Introducing the vector of unknowns
V ¼

a1

a2

a3

u

v

w

0
BBBBBBBB@

1
CCCCCCCCA
we rewrite system (34) in the form
oV

ot
þ AðVÞ oV

ox
¼ 0
where the matrix AðVÞ is given by
AðVÞ ¼

u 0 0 a1 0 0

0 u 0 a2 1 0

0 0 u a3 0 1

� 1
q

or11

oa1 � 1
q

or11

oa2 � 1
q

or11

oa3 u 0 0

� 1
q

or12

oa1 � 1
q

or12

oa2 � 1
q

or12

oa3 0 u 0

� 1
q

or13

oa1 � 1
q

or13

oa2 � 1
q

or13

oa3 0 0 u

0
BBBBBBBBBB@

1
CCCCCCCCCCA
In the limit of small displacements we obtain the following eigenvalues
m1;2;3;4 ¼ u�
ffiffiffiffiffi
l
q0

r
; m5;6 ¼ u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

0 þ
4l
3q0

s

In particular, if we take c2
0 as
c2
0 ¼

3kþ 2l
3q0
where k and l are the Lamé coefficients, we obtain classical velocities of transverse and longitudinal waves:
m1;2;3;4 ¼ u�
ffiffiffiffiffi
l
q0

r
; m5;6 ¼ u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2l

q0

s

Hence, the system is hyperbolic in the vicinity of the equilibrium state
a1 ¼ 1; a2 ¼ 0; a3 ¼ 0
To find eigenvalues explicitly, we consider the case where a3 ¼ 0, and w ¼ 0. The matrix G will be:
G ¼
ða1Þ2 þ ða2Þ2 a2 1

a2 1 0

1 0 1

0
B@

1
CA
The matrix AðVÞ will be then 4� 4 matrix:
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AðVÞ ¼

u 0 a1 0

0 u a2 1

� 1
q

or11

oa1 � 1
q

or11

oa2 u 0

� 1
q

or12

oa1 � 1
q

or12

oa2 0 u

0
BBBB@

1
CCCCA
The eigenvalues of the matrix AðVÞ are given by
detðA� mIÞ ¼ 0
They are the solutions of the following polynomial of the fourth degree and can be found in explicit form:
ðu� mÞ4 þ a1r11;1 þ r12;2ð1þ a2Þ
q

� �
ðu� mÞ2 þ a1 r11;1r12;2 � r12;1r11;2

q2

� �
¼ 0 ð36Þ
Here
rij;a ¼
orij

oaa
Explicit formulae for the coefficients of this polynomial can be found in Appendix 1.

3.5. Fully conservative elasticity model in 1D case

Using the equation for the reference density q0
Dq0

Dt
¼ 0
the governing equations can be rewritten in the following conservative form
o q0a1ð Þ
ot

þ o

ox
q0a1u
� �

¼ 0;

oa2

ot
þ o

ox
ðua2 þ vÞ ¼ 0;

oa3

ot
þ o

ox
ðua3 þ wÞ ¼ 0;

o a1q0uð Þ
ot

þ o

ox
a1q0ðuÞ

2 � r11

� �
¼ 0;

o a1q0vð Þ
ot

þ o

ox
a1q0uv� r12

� �
¼ 0;

o a1q0wð Þ
ot

þ o

ox
a1q0uw� r13

� �
¼ 0;

o a1q0Eð Þ
ot

þ o

ox
a1q0uE � r11u� r12v� r13w
� �

¼ 0:

ð37Þ
Here
E ¼ eþ 1

2
ðu2 þ v2 þ w2Þ ¼ eðq; sÞ þ eeðg; sÞ þ

1

2
ðu2 þ v2 þ w2Þ;
where eðq; sÞ and eeðg; sÞ are given by (31) and (32). The expressions for components of the stress tensor follow
from (33) (see also Appendix 1).

We note that the system can be symmetrized, if qe is a convex function of ðq; a2; a3; qsÞ [3,5,6].
Typical solutions of system (37) will be examined and compared with the ‘‘exact” solution of the non-con-

servative model (5). To this end, a numerical method will be used to solve system (37).
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4. Numerical method

The aim of this section is to derive a second-order Godunov scheme with approximate Riemann solver. The
HLLC approximate solver [17] is used to compute the fluxes at cell boundaries.

4.1. HLLC solver

This solver considers each wave as a discontinuity. In the HLLC framework, only two extreme waves and
the contact discontinuity are considered. It means that only two intermediate states instead of four will be con-
sidered. Examination of the results will show that such approximation has no serious consequences.

Each wave being considered as a discontinuity and the system being conservative, Rankine–Hugoniot con-
ditions across each wave (SL, SR and S	Þ read:
Fig. 5.
to the
F	L � S	LU	L ¼ FL � SUL ¼ QL; ð38Þ
F	R � SRU	R ¼ FR � SRUR ¼ QR; ð39Þ
Shock tube test problem in the fluid limit. The numerical solution of the conservative model is shown with symbols. It is compared
exact solution shown with lines at time t ¼ 51 ls. The agreement is perfect.



Fig. 6.
model
solutio
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F	R � S	U	R ¼ F	L � S	U	L;

where U ¼

a1

a1q0

a2

a1q0u

a1q0v

a1q0E

a3

a1q0w

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

and F ¼

a1u

a1q0u

a2uþ v

a1q0u2 � r11

a1q0vu� r12

a1q0Eu� r11u� r12v� r13w

a3uþ w

a1q0wu� r13

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

The extreme wave speeds are approximated by [2]:
SL ¼ minðuR � cR; uL � cLÞ;
SR ¼ maxðuR þ cR; uL þ cLÞ;

ð40Þ
where cR and cL are the sound speeds corresponding to largest roots of the polynomial (36). The intermediate
wave speed is obtained under HLL approximation [8]:
Impact test problem with elastic materials with the initial velocity difference of 20 m/s.The exact solution with the non-conservative
is shown with lines and the numerical solution with the conservative model is shown with symbols. A 2000 cells mesh is used. Both
ns are in perfect agreement.



Fig. 7
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S	 ¼ u	 ¼ u	L ¼ u	R ¼
QRð4Þ � QLð4Þ
QRð2Þ � QLð2Þ

ð41Þ
In the following, QRðiÞ (or QLðiÞÞ denotes the ith component of the vector QR (or QL). Using relations (38),
(39) the intermediate states are obtained as:
a1	
L ¼

QLð1Þ
S	 � SL

; a1	
R ¼

QRð1Þ
S	 � SR

;

r	11 ¼ r	11L ¼ r	11R ¼
QLð2ÞQRð4Þ � QRð2ÞQLð4Þ

QRð2Þ � QLð2Þ
;

r	12 ¼ r	12L ¼ r	12R ¼
QRð2ÞQLð5Þ � QLð2ÞQRð5Þ

QLð2Þ � QRð2Þ
;

v	 ¼ v	L ¼ v	R ¼
QLð5Þ � QRð5Þ
QLð2Þ � QRð2Þ

;

a2	
L ¼

QLð3Þ � v	

S	 � SL

; a2	
R ¼

QRð3Þ � v	

S	 � SR

;

E	L ¼
QLð6Þ þ r	11u	 þ r	12v	

QLð2Þ
; E	R ¼

QRð6Þ þ r	11u	 þ r	12v	

QRð2Þ
. Impact test problem with elastic materials with the initial velocity differential of 200 m/s. The exact solution with the non-
vative model is shown with lines and the numerical solution with the conservative model is shown with symbols. A 2000 cells mesh is
light differences appear.
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The flux for the Godunov method is sampled as follows:
Fig. 8
conser
used. L
FHLLC
iþ1=2 ¼

FL if 0 6 SL

F	L ¼ FL þ SL U	L �UL

� �
if SL 6 0 6 S	

F	R ¼ FL þ SR U	R �UR

� �
if S	 6 0 6 SR

FR if 0 P SR

:

8>>><
>>>:
4.2. Second-order Godunov type scheme

The second-order Godunov type method used for the computation of the forthcoming section follows
MUSCL-Hancock method (see [18]. The flow variables are characterized by a mean value Un

i and a slope
dUn

i . The slopes are here computed with conservative variables U, but other options are possible. The conser-
vative variables at the cell boundary are given by: Un

iþ1=2;� ¼ Un
i þ 1

2
dUn

i and Un
i�1=2;þ ¼ Un

i � 1
2
dUn

i

These cell boundary variables are then evolved over half a time step by:
U
nþ1=2
iþ1=2;� ¼ Un

iþ1=2;� �
Dt

2Dx
Fn

iþ1=2 � Fn
i�1=2

� �
;

U
nþ1=2
i�1=2;þ ¼ Un

i�1=2;þ �
Dt

2Dx
Fn

iþ1=2 � Fn
i�1=2

� �
:

. Impact test problem with elastic materials with the initial velocity difference of 2000 m/s. The exact solution with the non-
vative model is shown with lines and the numerical solution with the conservative model is shown with symbols. A 2000 cells mesh is
arge differences appear.
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The Riemann problem under HLLC approximation is then solved with cell boundary states U
nþ1=2
i�1=2;� and

U
nþ1=2
i�1=2;þas initial data. The solution is then evolved over the time step:
Fig. 9.
cross s
Unþ1
i ¼ Un

i �
Dt
Dx

FHLLC U
nþ1=2
iþ1=2;�;U

nþ1=2
iþ1=2;þ

� �
� FHLLC U

nþ1=2
i�1=2;�;U

nþ1=2
i�1=2;þ

� �� �

Results presented in the following section are obtained by using [20, limiter].

5. Numerical results

In this section, the exact solution of the non-conservative model presented in Section 2 is compared to the
numerical solution of the conservative model developed in Section 3. In the conservative model shear effects
are coupled with longitudinal waves, while they are uncoupled in the non-conservative model. Hence, a formal
comparison with mathematical formulations of the two models cannot be done. It is the reason why a com-
parison of their numerical solutions is important.

The numerical results presented for the conservative model of Section 3 are obtained with the numerical
scheme presented in Section 4. The material is governed by the stiffened gas EOS with parameters
p1 ¼ 6 108 Pa, c ¼ 4:4.

5.1. Fluid limit

In this example the shear modulus l in both models is set to zero. Both flow models reduce to the Euler
equations. We consider a shock tube where an interface separates initially a material at rest with high pressure
p ¼ 1010 Pa and density q ¼ 1000 kg=m3 on the left, and the same material at rest with low pressure p ¼ 105 Pa
and density q ¼ 1000 kg=m3 on the right. The interface is initially located at xi ¼ 0:5 m. Fig. 5 shows com-
puted results at time t ¼ 51 ls. Symbols correspond to the numerical solution of the conservative model,
the exact solution is shown with lines. A perfect agreement is observed in Fig. 5.

5.2. Shocks in elastic materials

In the following test problems the material is considered elastic with a shear modulus l ¼ 1010 Pa.
The Riemann problem with two colliding materials is considered under three different impact velocity dif-

ference: 20 m/s, 200 m/s and 2000 m/s. The materials have in all tests the same initial pressure ðp ¼ 105 PaÞ,
Shock velocity – particle velocity relation is shown for the two models (conservative with square symbols, non-conservative with
ymbols). Both models have the same weak and strong shocks limits. But differences are present for shocks of intermediate strength.
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the same initial density ðq ¼ 1000 kg=m3Þ and zero initial shear stress ðS ¼ 0Þ. Impacts of the two materials
occurs at xi ¼ 0:5 m.

Fig. 6 shows a comparison between ‘‘exact” results from the non-conservative model (lines) and numerical
results of the conservative model (symbols) in the weak shock limit (the initial velocity difference is 20 m/s).
Fig. 10. The material is considered elastic with l ¼ 1010 Pa in the presence of an initial tangential velocity discontinuity. The numerical
solution of the conservative model is shown with symbols and the exact solution of the non-conservative model is shown with lines at time
t ¼ 64 ls. Five waves are visible: the three classical waves (rarefaction on the left, shock wave on the right and the contact discontinuity)
and two shear waves. Large differences between the two models are clearly visible.
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The output time is t ¼ 64 ls. As the results are in perfect agreement, we can conclude that both models have
the same weak shock limit.

We now consider stronger shocks. Fig. 7 shows a comparison between ‘‘exact” results from the non-con-
servative model and numerical results of the conservative one (symbols) for shocks of moderate strength (the
initial velocity difference is 200 m/s). The output time is t ¼ 61 ls. Slight differences appear in the wave speeds
and post-shock states.

We now consider strong shocks. Fig. 8 shows a comparison between ‘‘exact” results from the non-conser-
vative model and numerical results of the conservative one (symbols) for strong shocks (the initial velocity
difference is 2000 m/s). The output time is t ¼ 41 ls. Large differences appear in the wave speeds and post-
shock states.

It is interesting to note that these differences vanish when the shocks become much stronger. In Fig. 9 the
shock velocity (in log scale) as a function of the material velocity (in log scale) is shown for both models. It
appears clearly that both models have the same weak and strong shocks limits. But for intermediate shocks,
differences are present.
Fig. 11. Expansion wave problem. The material is considered elastic with l ¼ 1010 Pa. The initial velocity is u ¼ �50 m=s on the left
ðx < 0:5 mÞ. On the right ðx > 0:5 mÞ, the initial velocity is set to u ¼ 50 m=s. Computed results with the conservative model are shown
with symbols at time t ¼ 64 ls. The exact solution of the non-conservative model is shown with lines. For weak expansion waves, the
agreement with both models is perfect.
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5.3. Configurations with five waves

In presence of shear effects, five waves are expected. The material is considered elastic with a shear modulus
l ¼ 1010 Pa. An interface separates initially the material with high pressure p ¼ 108 Pa and density
q ¼ 1000 kg=m3 on the left, and the same material at rest with pressure p ¼ 105 Pa and density
q ¼ 1000 kg=m3 on the right. A tangential velocity discontinuity is imposed: v ¼ 100 m=s on the left and
v ¼ �100 m=s on the right. The interface is initially located at xi ¼ 0:5 m. Fig. 10 shows computed results
at time t ¼ 64 ls. A large difference between models is clearly visible. Let us remark that wave patterns with
five waves have been also reported by [16] using the Godunov model close to the conservative model proposed
in Section 3.

5.4. Expansion waves

Preceding examples clearly show the differences between the two models in presence of shocks and shear
waves. We now examine their behavior for weak and strong expansion waves. The same elastic material as
previously is considered. The initial pressure is p ¼ 105 Pa and the initial density is q ¼ 1000 kg=m3

everywhere.
Fig. 12. Expansion wave problem. The material is considered elastic with l ¼ 1010 Pa. The initial velocity is u ¼ �800 m=s on ðx < 0:5 mÞ.
On the right ðx > 0:5 mÞ, the initial velocity is set to u ¼ 800 m=s. Computed results with the conservative model are shown with symbols
at time t ¼ 40 ls. Exact solution of the non-conservative model is shown with lines. For strong expansion waves large differences are
present.
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In the first run, the initial velocity is u ¼ �50 m=s on the left part of the domain ðx < 0:5 mÞ. On the right,
the initial velocity is set to u ¼ 50 m=s. Computed results with the conservative model are shown with symbols
in the Fig. 11 at time t ¼ 64 ls. The exact solution of the non-conservative model is shown with lines. For
weak expansion waves, the agreement is perfect.

We now consider stronger expansion waves. The same initial data are used except the velocity in the left
chamber, now set to u ¼ �800 m=s and the velocity in the right chamber set to u ¼ 800 m=s. Computed results
with the conservative model are shown with symbols in the Fig. 12 at time t ¼ 40 ls. Exact solution of the
non-conservative model is shown with lines. For strong expansion waves large differences are present.

It is important to recall that both models are isentropic in absence of shocks. However, the non-conserva-
tive model is based on assumption of small deformations. Consequently, under strong variations (shocks and
expansions) the non-conservative flow model predictions are questionable.

6. Conclusion

A modified version of [5,10] model for compressible elastic materials subjected to large deformations has
been studied. It represents a conservative hyperbolic system able to deal with strong shocks and large ampli-
tude expansion waves. Typical solutions of this model are compared with solutions of a more conventional
Eulerian non-conservative model. The numerical results for different tests show good agreement of both mod-
els for waves of very small or very large amplitude. However, for waves of intermediate amplitude there are
important discrepancies between results.

The topic of interfaces separating elastic bodies and compressible fluids encountered in multiple applica-
tions has not been addressed here. The paper by [11] gives a relevant example where such a problem has been
studied. The relaxation-projection method developed in [12,15] can be examined for the computation of such
interface problems.
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Appendix 1. Wave speed calculation

The internal energy is taken in the form
e ¼ eðq; sÞ þ eeðJ 1; J 2; sÞ

where
eðq; pÞ ¼ p þ cp1
qðc� 1Þ ; p þ p1 ¼ exp

s� s0

cv

� �
qc; s0 ¼ const; eeðg; sÞ ¼

l
4q0
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and
G ¼
ða1Þ2 þ ða2Þ2 þ ða3Þ2 a2 a3

a2 1 0

a3 0 1

0
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Calculations give us explicit expression of ee:
ee ¼
l

4q0

1

ða1Þ4=3
ððða1Þ2 � ða1Þ2=3 þ ða2Þ2 þ ða3Þ2Þ2 þ 2ð1� ða1Þ2=3Þ2 þ 2ðða2Þ2 þ ða3Þ2ÞÞ
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The stress tensor is given by
r ¼ �pI � l
G2 � J2

3
I

ða1Þ1=3
� G� J 1

3
I

� �
ða1Þ1=3

 !
where
J 1¼ ða1Þ2þða2Þ2þða3Þ2þ2;

J 2¼ ðða1Þ2þða2Þ2þða3Þ2Þ2þ2þ2ða2Þ2þ2ða3Þ2;

G2 ¼
ða2Þ2þða3Þ2þðða1Þ2þða2Þ2þða3Þ2Þ2 a2ð1þða1Þ2þða2Þ2þða3Þ2Þ a3ð1þða1Þ2þða2Þ2þða3Þ2Þ
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jG j¼ ða1Þ2:
Sound speed calculation in a simplified case (w ¼ 0 and a3 ¼ 0) needs only components r11 and r12 and their
derivatives. They read:
r11 ¼ �p � l
3

ða2Þ2 þ 2ðða1Þ2 þ ða2Þ2Þ2 � 2

ða1Þ1=3
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 !
;

r12 ¼ �la2 1þ ða1Þ2 þ ða2Þ2

ða1Þ1=3
� ða1Þ1=3

 !
:

The wave speeds m are solutions of the following polynomial:
ðu� mÞ4 þ ðu� mÞ2 ða
1Þr11;1 þ r12;2ð1þ ða2ÞÞ

q
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where
rij;a ¼
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:

These derivatives here read:
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With the EOS
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